Ph.D. Thesis Proposal:
Programming Language Support For
Separation Of Concerns

Doug Orleans
April 19, 2002

Abstract

Separation of concerns is a useful problem-solving technique. Ideally, each program module
should embody one (and only one) concern of the problem that the program is solving.
In practice, this correspondence is limited by the constructs available in the programming
language; some kinds of concerns are easier or harder to separate in a given language, and
crosscutting concerns are hard to separate in any currently popular language. Programming
languages should provide support for separation of concerns for as many kinds of concerns
as possible, and they can achieve this while remaining conceptually simple. I describe a
language called Fred that attempts to meet these criteria, based on predicate dispatching,
aspect-oriented programming, and units. I provide an extended example of some reusable
components that separate crosscutting concerns.

1 Introduction

In 1976, Edsger W. Dijkstra described a technique for problem solving [5, page 211]: “study
in depth an aspect of one’s subject matter in isolation, for the sake of its own consistency,
all the time knowing that one is occupying oneself with only one of the aspects”; he dubbed
this technique separation of concerns. It is not easy to decide how a problem should be
decomposed into separate concerns, but realizing that a decomposition is needed is an important
first step in solving the problem.

Ideally, the decomposition of a problem into separate concerns should lead directly to the
modularization of a program that solves the problem—that is to say, each program module
should embody one (and only one) concern of the problem. The more this is true, the easier the
program is to be understood, modified, or reused; the less this is true, the more the program
tends to be tangled, brittle, and overspecialized.

In practice, this correspondence is limited by the constructs available in the programming
language. Object-oriented languages make it easy to modularize data-structure concerns (as
classes), but functional concerns can end up scattered across multiple classes. Functional lan-
guages such as ML have roughly the opposite problem. In addition, there are concerns that
cannot be properly modularized using the constructs of any currently popular programming
language, because the concerns cut across the modularization that is supported by the ex-
isting constructs. This realization has led to the design of aspect-oriented programming
(AOP) [15] languages that support the modularization of crosscutting concerns.

AOP language design is an active area of research; some of the more prominent languages
under development are AspectJ [14], HyperJ [19], ComposeJ [20], DemeterJ [12], and the lan-
guage of aspectual components [16]. They all address the problem of crosscutting concerns, by
extending Java [11] with new constructs for expressing concerns that could not be expressed
modularly in plain Java.

I have developed my own AOP language called Fred [17]. It is a dynamically typed lan-
guage with a very simple core set of constructs together with some syntactic sugar for expressing
behavior in a variety of styles. Its central feature is a dynamic dispatch mechanism that gener-
alizes predicate dispatching [6] to allow behavior that is common to multiple operations to be
expressed in a single method, called a branch. My prototype implementation is embedded in
MzScheme [8] as a set of procedures and macros; branches can be combined with MzScheme’s
units [9] to form reusable components of crosscutting behavior.

The goal of Fred is to be simple yet general, supporting the widest variety of concern modu-
larization: the basic constructs should be easy to understand operationally, but they should be
able (with suitable syntactic sugar) to emulate the constructs of the other AOP languages, in-
cluding aspects, hyperslices, composition filters, adaptive visitors, and aspectual collaborations.
A secondary goal is to be efficiently implementable, as much as possible without adding too
many constraints on the expressibility of the language.

In summary, my proposed thesis is that programming languages should provide support for
separation of concerns for as many kinds of concerns as possible, and that they can achieve this
while remaining conceptually simple. The remainder of this paper describes a programming
language that attempts to meet these criteria. Section 2 introduces the core constructs of
Fred, along with some of the syntactic sugar. Section 3 shows an example of a Fred program
with reusable components. Section 4 outlines the further research required to complete the
dissertation.

2 Fred: A Simple Yet General AOP Language

As mentioned in section 1, Fred is embedded in MzScheme. This means that a Fred program may
use syntax and procedures from Scheme [13]; in particular define and lambda will be needed.

The main idea behind Fred is that of extensible decisions. In an OOP language with
dynamic dispatch, every message send triggers a decision, namely which method to execute.
Unlike an if or switch statement, however, the decision is extensible: new methods can be
added incrementally, in subclasses or sibling classes, without modifying code. In single-dispatch
OQP, the decision depends solely on the run-time type of the receiver; with multiple dispatch,
the decision can also depend on the run-time types of the other arguments. With predicate
dispatching, the decision can depend on any arbitrary expression involving the arguments. In
AspectJ, crosscutting behavior can be specified as extensions to existing decisions, in the form
of advice, but the decision condition is even more general than predicate dispatching: a pointcut
expression can involve the message, or the execution context or history. Each join point represents
a decision to be made about what code to execute. Fred unifies all of these ways of extending
decisions into one general dynamic dispatch mechanism.

There are four basic kinds of behavioral entities in Fred: messages, primary branches,
around branches, and decision points. Fred provides syntax for defining the first three:

e (define-msg name) creates a message and binds it to the variable name in the current
lexical environment. Messages are procedures and can be sent to a list of values using the
same syntax as procedure application.

o (define-branch condition body) and (define-around condition body) create a pri-
mary or around branch whose condition predicate is the value of condition and whose
body is the value of body. Both arguments must evaluate to procedures of one argument,
a decision point. The branch is added to the global set of branches.

Decision points are not created explicitly; when a message is sent, a decision point is implicitly
created and passed to the condition predicates of every defined branch. The set of branches whose
condition predicates return true (that is, any value besides #£) for a given decision point is known

as the set of applicable branches; it is a runtime error (“message not understood”) if this set
is empty. The most precedent branch from this set is selected and the decision point is passed to
its body procedure; it is a runtime error (“message ambiguous”) if there is more than one most
precedent applicable branch, unless they are all around branches, in which case one is selected
arbitrarily. The branch body procedure can call the special function follow-next-branch to
pass the decision point to the body procedure of the most precedent applicable branch that is not
already being executed. The precedence relation between branches is based on logical implication
of condition predicate expressions, except that around branches always precede primary branches;
this relation is described in further detail later in this section.
There are three procedures for inspecting the context of a decision point:

e (dp-msg dp) returns the message that was sent. ((msg-name msg) returns the name of
a message as a symbol.)

e (dp-args dp) returns the list of values the message was sent to.

e (dp-previous dp) returns the decision point that was being processed when the message
was sent.

These basic building blocks are enough to define the behavior of a program separated by
concern. For example, using MzScheme’s structure type facility, we can make a simple person
class:

(define-struct person (fname lname))
(define-msg full-name)
(define-branch
(lambda (dp) (and (eq? (dp-msg dp) full-name)
(= (length (dp-args dp)) 1)
(person? (car (dp-args dp)))))
(lambda (dp)
(let ((this (car (dp-args dp))))
(string-append (person-fname this)
(person-lname this)))))

A person object has two fields, fname and 1lname. When the full-name message is sent to a
person object, the values of the fname and 1name fields of that object are concatenated (with a
space in between). Thus full-name acts as a method on the person class, although it is defined
outside of the class definition and could appear in a separate part of the program.

We can also make a knight subclass with new behavior for handling full-name:

(define-struct (knight person) ())
(define-branch
(lambda (dp) (and (eq? (dp-msg dp) full-name)
(= (length (dp-args dp)) 1)
(knight? (car (dp-args dp)))))
(lambda (dp)
(string-append "Sir " (follow-next-branch))))

Notice that this branch’s condition predicate overlaps with that of the previous one: if
full-name is sent to a knight object, then both conditions will be true. In this case, the second
branch has precedence, because its condition predicate logically implies the first branch’s—that
is, the first branch’s condition predicate is always true whenever the second branch’s condition
predicate is true. In particular, (person? x) is always true whenever (knight? x) is true,
because knight is a subclass of person.

The idea of branch precedence being based on logical implication between condition predicates
is taken directly from Ernst et. al.’s predicate dispatching system [6]. The main advantage of
this is that branch precedence is a straightforward generalization of the usual method overriding
rules in object-oriented languages: subclass methods override superclass methods, or in the case
of multiple dispatch, more specific methods override less specific methods.

However, sometimes you want a branch with a very general condition predicate to precede
other branches with more specific condition predicates. For example, suppose you wanted to
trace all messages sent to person objects:

(define-around
(lambda (dp)
(person? (car (dp-args dp))))
(lambda (dp)
(printf "Received message “a. n" (msg-name (dp-msg dp)))
(follow-next-branch)))

Its condition predicate does not logically imply any of the condition predicates of the other
branches, but it needs to be followed before they do. (In particular, it needs to precede the first
branch above, since that branch’s body procedure does not call follow-next-branch!) Making
it an around branch causes it to precede any primary branch, so it will be followed before the
others.

Logical implication of predicates is undecidable in general, so Fred can only have a con-
servative approximation to the implication relation. To determine predicate implication, Fred
uses: the subtype relation, both for user-defined structure types and built-in Scheme types (such
as the numeric type hierarchy); substitution of equals for equals (e.g. (eq? x ’foo) implies
(symbol? x) because (symbol? ’foo) is true); and propositional calculus rules (such as (and
P @) implies P). Although Fred currently computes this relation between applicable branches
at message send time, the relation could instead be computed between all branches at branch
definition time. A static analyzer could even guarantee that “message ambiguous” errors will
never occur, by rejecting a program unless it can determine that all pairs of branch predicates are
either related by implication in one direction or logically exclusive, i.e. one implies the negation
of the other.

Fred provides some helper functions and syntax to make condition predicates more concise,
in the manner of AspectJ’s pointcut designators:

e (call msg) produces a condition predicate that returns true for any decision point whose
message is msg.

e (args type-pred ... [..]) produces a condition predicate that returns true for any
decision point such that each type-pred returns true for the corresponding argument of
the decision point. The predefined type predicate ? returns true for all values. If .. is
specified at the end of the args form, then the number of arguments may be more than
the number of type predicates.

e (cflow condition) produces a condition predicate that returns true if condition is true
for the decision point or any of its predecessors (using dp-previous to walk up the stack).
(cflowbelow condition) is the similar but does not check the decision point itself. (An
example using cflow to solve a “vanishing aspects” problem appears in [17].)

o (&& condition ...), (|| condition ...), and (! condition) can be used to combine
condition predicates into logical formulas.

Fred also provides some syntax to bind some variables in the body of a branch to parts of
the decision point, similar to arguments to advice in AspectJ:

e (with-msg (msg) body ...) produces a body procedure that binds msg to the message
of the decision point in the scope of the body expressions.

o (with-args formals body ...) produces a body procedure that binds formals to the
arguments of the decision point in the scope of the body expressions.

e (with-msg-and-args formals body ...) produces a body procedure that binds formals
to the message and arguments of the decision point in the scope of the body expressions.

Thus, the three example branches could be written as follows:

(define-branch (&& (call full-name) (args person?))
(with-args (this)
(string-append (person-fname this) " "
(person-lname this)))))
(define-branch (&& (call full-name) (args knight?))

(lambda (dp)
(string-append "Sir " (follow-next-branch))))
(define-around (args person? ..)
(with-msg (msg)
(printf "Received message ~a.”n" (msg-name msg))
(follow-next-branch)))

Fred also provides syntactic sugar for concise definition of branches that act like ordinary
predicate dispatching methods, i.e. their condition predicate only involves a single call test and
some predicates over the arguments:

e (define-method msg formals [& pred] body ...) adds a primary branch whose con-
dition predicate tests that the decision point message is msg and that pred is true (if
supplied), with the arguments bound to formals. The branch body also has the argu-

ments bound to formals.

This allows us to rewrite the first two example branches as follows:

(define-method full-name (this) & (person? this)

(string-append ((person-fname this) " " (person-lname this))))
(define-method full-name (this) & (knight? this)

(string-append "Sir " (follow-next-branch)))

Additionally, each formal parameter in the formals list can be replaced by an application
whose first argument is a variable, which is bound to the corresponding argument:

(define-method full-name ((person? this))

(string-append ((person-fname this) " " (person-lname this))))
(define-method full-name ((knight? this))

(string-append "Sir " (follow-next-branch)))

Two abbreviations also exist for around branches:

o (define-before condition body) adds an around branch whose body invokes the body
procedure and then follows the next branch.

o (define-after condition body) adds an around branch whose body follows the next
branch and then invokes the body procedure.

Thus we can rewrite the third example branch as follows:

(define-before (args person? ..)
(with-msg (msg)
(printf "Received message “a.”n" (msg-name msg))))

Instead of using MzScheme’s structure mechanism to define data structures, Fred provides
some syntax for defining classes and fields:

o (define-class name parent ...) creates a class with the given parent classes and binds
it to the variable name in the current lexical environment.

e (define-field mname type [default]) creates storage for the given type, which is either
a class or a type predicate. It defines two messages in the current lexical environment,
get-name and set-name!, and adds two branches to get and put values from and to the
storage. The get-name branch returns the value of default if no value has been stored
for its argument using the set-name! branch. (add-field name type [default]) adds
the two branches, assuming the two messages have already been defined.

Fred also provides two messages for instantiating classes, and one procedure for testing in-
stances:

e (make class initarg ...) creates an instance of class and sends the init message to
the instance and the initarg values. The default branch for init does nothing.

e (is-a? obj class) returns trueif oby is an instance of class or one of its descendants.

Also, a class can be used in place of a type predicate in an args or define-method form.
Thus we can rewrite the previous example as follows:

(define-class person)

(define-field fname person)

(define-field lname person)

(define-method init ((person this) fname lname)
(set-fname! this fname)
(set-1lname! this lname))

(define-msg full-name)

(define-method full-name ((person this))
(string-append (get-fname this) " " (get-lname this)))

(define-class knight person)
(define-method full-name ((knight this))
(string-append "Sir " (follow-next-branch)))

(define-before (args person ..)
(with-msg (msg)
(printf "Received message “a."n" (msg-name msg))))

3 An Example
In order to give a better feel for how the mechanisms described in section 2 fit together to make

reusable components of crosscutting concerns, I will present a complete example of a crosscutting
component used with two different base programs. The component is itself built up from several

smaller reusable components. The example is based on the “challenge problem” of Ovlinger
et. al. [18].

The example uses MzScheme’s units facility [9]. There are two kinds of units, atomic and
compound:

e (unit (import <name ...) (export emame ...) body ...) creates an atomic unit. The
iname variables are bound in the scope of the body expressions, which must define the
ename variables.

e (compound-unit (import <name ...) (link (tag (unit linkage ...)) ...) (export
(tag ename) ...)) creates a compound unit from other units. The units are linked to-
gether by assigning each unit a unique tag variable, and providing linkage specifications
for each of a unit’s imports. A linkage specifications can either be one of the iname
variables or the form (tag wvar) where var is one of the export variables from the unit
corresponding to tag. Similarly, the ename variables come from units corresponding to
their tag variables.

Units are invoked with (invoke-unit wnit arg ...). Invoking an atomic unit binds its
import variables to the values of the arg expressions, then evaluates its body expressions in
order. Invoking a compound unit also binds its import variables, but then invokes each of its
sub-units in order, binding their import variables to the exported values from the other units.

The first base program is shown in figure 1. It defines an abstract Item class and two concrete
subclasses, Simple and Container. Simple objects have weight, while Containers have capacity
and a list of contained Items. The check operation determines whether a Container, or any
Containers inside it, are over capacity, and prints a message if so. Figure 2 defines a test case
for the program.

Figure 1: The container unit

(define container
(unit (import)
(export Item get-name
Simple get-weight
Container get-capacity get-contents add-item!
check)

(define-class Item)

(define-field name Item)

(define-method init ((Item this) name)
(set-name! this name))

(define-class Simple Item)

(define-field weight Simple)

(define-method init ((Simple this) name weight)
(init this name)
(set-weight! this weight))

(define-class Container Item)

(define-field capacity Container)

(define-field contents Container ’())

(define-method init ((Container this) name capacity)
(init this name)
(set-capacity! this capacity))

(define-msg add-item!)

(define-method add-item! ((Container this) (Item 1))
(set-contents! this (append (get-contents this) (list 1i))))

(define-msg check)

(define-method check ((Simple this))
(printf "Simple object “a weighs ~a"n"
(get-weight this))

(define-method check ((Container this))
(let ((total (apply + (map check (get-contents this)))))

(printf "Container “a weighs “a™n" (get-name this) total)
(when (> total (get-capacity this))

(printf "Container “a overloaded™n" (get-name this)))
total))

(get-name this) (get-weight this))

))

(define test-container

Figure 2: Testing the container unit

(unit (import Simple Container add-item! check)
(export main)

(define (main)

(let ((c1 (make Container "basket" 4))
(c2 (make Container "bowl" 1))
(c3 (make Container "bag" 1))
(apple (make Simple "apple" 1))
(pencil (make Simple "pencil" 1))
(orange (make Simple "orange" 1))
(kiwi (make Simple "kiwi" 1))
(banana (make Simple "banana" 1)))

(add-item!
(add-item!
(add-item!
(add-item!
(add-item!
(add-item!
(check c1)
(add-item!
(check c1)
(void)))
))

c3
c2
c2
cl
cl
cl

c2

kiwi)
c3)
apple)
orange)
pencil)
c2)

banana)

(define container-program

(compound-unit
(import)

(link [C (container)]
[TC (test-container (C Simple) (C Container)

(C add-item!) (C check))])

(export (TC main))))

Figure 3: The memoize unit

;; Memoize a computation: the first time a decision point occurs,
;; store the return value, and return it the next time a decision
;5 point with the same key occurs instead of recomputing.
(define memoize
(unit (import memoize? dp-key
invalidate? dp-keys)
(export)

(define-field cached-value ?7)

(define (clear-cache! c)
(printf "clear cache™n")
(set-cached-value! c #f))

(define-around memoize?
(lambda (dp)
(let ((key (dp-key dp)))
(if (not (get-cached-value key))
(set-cached-value! key (follow-next-branch))
(printf "using cached value™n"))
(get-cached-value key))))

(define-before invalidate?
(lambda (dp)
(for-each clear-cache! (dp-keys dp))))))

Notice that the check operation does a recursive traversal over a composite Container
object. An optimization would be to memoize the results for each container and sub-container,
but the caches would have to be invalidated when a container’s contents are modified (with
add-item!). Since memoization is a common technique that is applicable in many different
situations, we can make a generic memoize unit (figure 3) that is parameterized over two condition
predicates: memoize?, which returns true for all decision points corresponding to invocations of
the operation that we want to memoize, and invalidate?, which returns true for all decision
points corresponding to operations that cause some caches to be invalidated. The memoize unit
also imports two functions that extract relevant data from a decision point that matches one of
the two conditions: dp-key extracts the input to the function being memoized, while dp-keys
extracts the list of keys whose caches should be invalidated. The cache is implemented as a field,
since fields can be defined outside of any particular class; the type predicate for the field is 7,
since the type of the keys is irrelevant.

Notice that the memoize unit does not export anything, it simply imports some condition
predicates and defines some branches that use them. Branches are not bound to variables; they
exist in a global table, so there’s nothing to export. This is in contrast to Findler and Flatt’s
style of programming with units and mixins [7], where each unit imports some classes, defines
classes that extend the imported classes, and exports the new classes. The effect of such a unit
is to add behavior to a class by replacing it with a subclass that has the added behavior. In
Fred, however, behavior can be added directly by defining branches, so there’s no need to export
replacement classes. This approach is simpler and potentially more efficient, since there isn’t an
artifical extension to the inheritance chain with every increment.

Now in order to implement the dp-keys function required by the memoize unit, we need to

10

Figure 4: The backlink unit

;; Keep track of the parent node for each node in a tree structure.
;; child-add? is a condition predicate representing an addition of a
;; new child node to a parent node. dp-parent and dp-child extract
;; the parent and child from the addition dp. get-parent returns the
;; parent node of a node, or #f if it is a root.
(define backlink

(unit (import child-add? dp-parent dp-child)

(export get-parent)

(define-field parent ?7)

(define-after child-add?
(lambda (dp)
(set-parent! (dp-child dp) (dp-parent dp))))))

keep track of what containers an item is inside; we only know what items are inside a container,
but there is no link pointing in the other direction. Keeping backlinks for a tree structure
is another common technique that we can implement using a generic backlink unit (figure 4).
This unit imports one condition predicate, child-add?, which returns true for all decision points
corresponding to the addition of a new child node to a parent node; the dp-parent and dp-child
functions extract the parent and child nodes from the decision point. The backlink unit exports
one message, get-parent, which returns the parent node of a given node, or #f if it is a root
node (i.e. it hasn’t been added to any parent). Similar to the memoize unit, it stores the backlink
in a field that is not attached to any class, since we don’t care what the type of nodes is.

Given these two generic units, we can build a compound unit that memoizes a recursive
function over a tree structure. The memoize-tree unit (figure 5) is more specialized than the
memoize unit, but still generic enough to be used with any kind of tree structure data types.
The dp-keys function is provided to the memoize unit by an adapter unit (defined inline) that
traverses the backlinks from a node to the root of the tree it belongs to, using the get-parent
function exported from the backlink unit. The memoize? and child-add? condition predicates
(plus their extractors) are imported and passed on to the sub-units.

We can further specialize this unit for a tree structure that is implemented by a set of classes
using the Composite design pattern [10]. The memoize-composite-function unit (figure 6)
imports two classes, Component and a subclass Composite, as well as two messages, func and
add-component!. The former is the function to be memoized, and takes a Component object as
its first argument; the latter takes at least two arguments, a Composite object C and a Component
object O, and adds O to C. These are adapted to the memoize-tree unit by providing condition
predicates and extractors in terms of the imported classes and messages.

We now have two different generic crosscutting components that memoize a recursive function
over a tree structure: memoize-tree is similar to the AspectJ implementation of the challenge
problem in [18], which uses abstract pointcuts in the style of Clarke and Walker [3], while
memoize-composite-function is similar to the implementation using aspectual collaborations,
which imports a participant graph of classes. The latter is simpler to use when the base program
does actually use the Composite design pattern; it’s just a matter of name mapping (figure 7).
(Figure 8 shows the program output comparing the effects of using and not using the caching
aspect.) However, the former can be used in a wider variety of situations, such as an implemen-
tation using Scheme lists and set-cdr!. Fred supports both styles of parameterized components
equally well, due to the generality of units and branches.

11

Figure 5: The memoize-tree unit

;; Memoize a computation on nodes of a tree that recurs on the node’s
;; children. Invalidate a node’s cache whenever a new child is about
;; to be added to the node.
(define memoize-tree
(compound-unit
(import memoize? dp-node
child-add? dp-parent dp-child)
(1ink [B (backlink child-add? dp-parent dp-child)]
[UB ((unit (import dp-parent get-parent)
(export dp-ancestors)
(define (dp-ancestors dp)
(let loop ((node (dp-parent dp)))
(if (not node)
>0
(cons node (loop (get-parent node))))))
) dp-parent (B get-parent))]
[M (memoize memoize? dp-node
child-add? (UB dp-ancestors))])
(export)))

Figure 6: The memoize-composite-function unit

;; Memoize a recursive function over a set of classes that use the
;; Composite pattern. Invalidate the cache when a component is added
;; to a composite.
(define memoize-composite-function
(compound-unit
(import Component func Composite add-component!)
(1ink [A ((unit (import Component func Composite add-component!)
(export func-call? dp-node
child-add? dp-parent dp-child)

(define func-call?
(&& (call func) (args Component ..)))
(define (dp-node dp)
(car (dp-args dp))) ; the Component

(define child-add?

(&& (call add-component!) (args Composite Component .

(define (dp-parent dp)

(car (dp-args dp))) ; the Composite
(define (dp-child dp)
(cadr (dp-args dp))) ; the Component

) Component func Composite add-component!)]
[M (memoize-tree (A func-call?) (A dp-node)

(A child-add?) (A dp-parent) (A dp-child))])

(export)))

12

)

Figure 7: Putting it all together

(define cached-container-program
(compound-unit
(import)
(1ink [C (container)]
[M (memoize-composite-function (C Item) (C check)
(C Container) (C add-item!))]
[TC (test-container (C Simple) (C Container)
(C add-item!) (C check))])
(export (TC main))))

(define caching-comparison
(unit (import main cached-main)

(export)
(printf "Running the program without caching:™n")
(main)

(printf "“nRunning the program with caching:"n")
(cached-main)
(newline)

)

(define (compare base cached)
(invoke-unit
(compound-unit
(import)
(link [B (base)]
[C (cached)]
[P (caching-comparison (B main) (C main))])
(export))))

(compare container-program cached-container-program)

13

In order to demonstrate that the memoize-composite-function unit is truly reusable, I have
constructed a completely different base program that also uses the Composite design pattern and
has a recursive function that could be optimized with memoization. Figure 9 shows a GUI unit
that computes an Image from a tree of nested Widget objects; figure 10 shows a test program.
Again, using the aspect is just a matter of name mapping (figure 11). The comparison output
is shown in figure 12.

4 Research Plan

Perhaps the most important work to be done to complete the dissertation is to compare the
capabilities of Fred with the major AOP languages. I believe that it can do most of the interesting
things that they can do, and with some additions to the core facilities it can do the rest. The first
step in the comparison will be to define syntactic sugar for the features of the other languages; this
has been done for the basic features of AspectJ, namely the primitive pointcut designators call,
args (which subsumes target), and cflow. A similar approach should be suitable for defining
aspects (both concrete and abstract), as well as HyperJ’s hyperslices, ComposeJ’s composition
filters, DemeterJ’s adaptive visitors, and aspectual collaborations. My hunch is that all of these
constructs can be defined as units containing branches.

The next step will be to come up with a good set of examples that can be defined in all the
different languages, and show that the essential features of the implementations are preserved
when translated to Fred. The caching example presented in this paper is one candidate; the
cords library from my first paper about Fred [17] is another. The papers describing the other
languages should also provide plenty of examples to choose from.

One major difference between Fred and the other languages is that Fred is dynamically typed
while they are all statically typed, being extensions to Java. I don’t think this will prohibit
useful comparisons between the languages; the type declarations can simply be erased from the
programs in the other languages, and the crosscutting nature of the concerns implemented by
the programs will still be evident. That is to say, the support for separation of concerns in AOP
languages is not provided by the static type system, but by the features of the dynamically typed
subset. If this turns out not to be true for some of the languages, then I may need to add some
kind of static type system to Fred in order to make a fair comparison.

A further interesting exercise in language comparison would be to formally define the dy-
namic semantics of (some interesting subset of) the languages, and use Felleisen’s notion of
expressibility to demonstrate that Fred is at least as expressible as the other AOP languages,
if not strictly more expressible. While I may not have the time to complete formal proofs, I
should be able to come up with example programs that intuitively satisfy the requirements for
comparing expressbility.

There are a number of capabilities that I have already been planning to add to Fred in
order to emulate the features of other AOP languages. One is the ability to declare inheritance
relations between classes separately from the definitions of the classes, similar to the declare
parents feature of AspectJ. (This feature is also present in BeCecil [2], a spiritual ancestor to
Fred.)

Another feature that would be useful is to be able to bind variables in a branch’s condition
predicate that are visible to the branch’s body procedure. The predicate dispatching language of
Ernst et. al. [6] has this feature, which is very similar to the context exposure feature of AspectJ:
pointcuts can bind variables that can be accessed in advice. The example program in section 3
shows an alternate mechanism that does something similar: selectors that extract information
from a decision point can be supplied to a unit alongside a condition predicate.

It may turn out that a finer-grained mechanism for overriding the precedence relation is
needed than simply having primary branches and around branches. AspectJ has the dominates
relation between aspects that contributes to advice precedence; something along these lines could

14

be added to Fred.

There is much room for improvement in the efficiency of Fred’s current implementation.
Chambers and Chen [1] describe several techniques for efficiently implementing predicate dis-
patching, by computing a dispatch tree from a set of predicates. These techniques can be used
in Fred, although the dispatch tree would have to be recomputed when a new branch is added;
there may be some way to structure the tree so that it would only need partial recomputation.
There may also be some static analysis techniques that could assist in optimization.

One common criticism of AOP is that it seems to break one of the benefits of encapsulation:
the code for one concern may be affected by the code in some other concern, but you can’t tell
that from looking at one concern in isolation. This problem could be alleviated with a smart code
browser tool that would show exactly what concerns have code that could affect the code you're
looking at. The AspectJ team has developed aspect browser plugins for various development
environments; something similar could be developed as an extension to DrScheme [4].

References

[1] C. Chambers and W. Chen. Efficient multiple and predicate dispatching. In Proceedings of
OOPSLA 99, Denver, CO, November 1999.

[2] C. Chambers and G. Leavens. Bececil, a core object-oriented language with block structure
and multimethods: Semantics and typing. In Proceedings of the The Fourth International
Workshop on Foundations of Object-Oriented Languages (FOOL 4), Paris, France, January
1997.

[3] S. Clarke and R. J. Walker. Separating crosscutting concerns across the lifecycle: From com-
position patterns to AspectJ and Hyper/J. Technical Report UBC-CS-2001-05, University
of British Columbia, Vancouver, Canada, 2001.

[4] J. Clements, P. T. Graunke, S. Krishnamurthi, and M. Felleisen. Little languages and their
programming environments. Monterey Workshop, 2001.

[5] E. W. Dijsktra. A Discipline of Programming. Prentice-Hall, 1976.

[6] M. D. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A unified theory of
dispatch. In Proceedings of ECOOP ’98, the 12th European Conference on Object-Oriented
Programming, pages 186-211, Brussels, Belgium, July 20-24 1998.

[7] R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins.
In Proceedings of ICFP, 1998.

[8] M. Flatt. PLT MzScheme: Language manual. Technical Report TR97-280, Rice University,
1997.

[9] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proceedings of the
ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation,
pages 236-248, 1998.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[11] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison Wesley, 1996.

[12] G. Hulten, K. Lieberherr, J. Marshall, D. Orleans, and B. Samuel. DemeterJ User Manual.
http://www.ccs.neu.edu/research/demeter/.

15

[13]

[14]

[15]

[16]

[17]

R. Kelsey, W. Clinger, and J. Rees. Revised® report on the algorithmic language scheme,
February 1998.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In Proceedings of the European Conference on Object-Oriented Programming,
2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the Furopean Conference on
Object-Oriented Programming (ECOOP). Springer-Verlag, June 1997.

K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual collaborations for collaboration-
oriented concerns. Technical Report NU-CCS-01-08, College of Computer Science, North-
eastern University, Boston, MA 02115, Nov. 2001.

D. Orleans. Incremental programming with extensible decisions. In Proceedings of the
1st International Conference on Aspect-Oriented Software Development (AOSD), Enschede,
The Netherlands, April 2002.

J. Ovlinger, K. Lieberherr, and D. Lorenz. Aspects and modules combined. Technical Report
NU-CCS-02-03, College of Computer Science, Northeastern University, Boston, MA, March
2002.

P. Tarr and H. Ossher. Hyper/J User and Installation Manual. IBM T. J. Watson Research
Center, Yorktown Heights, NY, USA, 2000.

J. Wichman. ComposeJ: The development of a preprocessor to facilitate composition fil-
ters in the Java language. MSc. thesis, Dept. of Computer Science, University of Twente,
Enschede, the Netherlands, December 1999.

16

A Auxiliary Figures

Figure 8: Output of container comparison

Running the program without caching:
Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container bag weighs 1

Simple object apple weighs 1
Container bowl weighs 2
Container bowl overloaded
Container basket weighs 4
Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container bag weighs 1

Simple object apple weighs 1
Simple object banana weighs 1
Container bowl weighs 3
Container bowl overloaded
Container basket weighs 5
Container basket overloaded

Running the program with caching:
clear cache

clear cache

clear cache

clear cache

clear cache

clear cache

Simple object orange weighs 1
Simple object pencil weighs 1
Simple object kiwi weighs 1
Container bag weighs 1

Simple object apple weighs 1
Container bowl weighs 2
Container bowl overloaded
Container basket weighs 4
clear cache

clear cache

using cached value

using cached value

using cached value

using cached value

Simple object banana weighs 1
Container bowl weighs 3
Container bowl overloaded
Container basket weighs 5
Container basket overloaded

17

Figure 9: The GUI unit

(define GUI
(unit (import)
(export Image show overlay translate
Widget get-image
Label get-text
Canvas
Panel add-widget!)

(define-class Image)
(define-field bits Image ’())
(define-method init ((Image this) bits) (set-bits! this bits))
(define-msg show)
(define-method show ((Image it)) (reverse (get-bits it)))
(define-msg overlay)
(define-method overlay ((Image il) (Image i2))
(make Image (append (get-bits il) (get-bits i2))))
(define-msg translate)
(define-method translate ((Image this) (complex? vector))
(make Image (map (lambda (bit) (cons (+ vector (car bit)) (cdr bit)))
(get-bits this))))

(define-class Widget)

(define-class Label Widget)
(define-field text Label)
(define-method init ((Label this) text) (set-text! this text))

(define-class Canvas Widget)

(define-msg set-image!)

(add-field image Canvas)

(define-method init ((Canvas this) image) (set-image! this image))

(define-class Panel Widget)

(define-field widgets Panel ’())

(define-msg add-widget!)

(define-method add-widget! ((Panel this) (Widget w) (complex? loc))
(set-widgets! this (cons (cons loc w) (get-widgets this)))
(void))

(define-msg get-image)
(define-method get-image ((Label this))
(make Image (list (list O (get-text this)))))
(define-method get-image ((Panel this))
(let loop ((widgets (get-widgets this)))
(if (null? widgets)
(make Image ’())
(overlay (translate (get-image (cdar widgets)) (caar widgets))
(loop (cdr widgets))))))))

18

Figure 10: Testing the GUI unit

(define test-GUI
(unit (import Image show
Label
Canvas
Panel add-widget! get-image)
(export main)
(define (main)
(let ((main-panel (make Panel))
(text-panel (make Panel))
(picture-panel (make Panel)))
(add-widget! text-panel (make Label "hello") 0)
(add-widget! text-panel (make Label "world") 6)
(add-widget! main-panel text-panel 1+1i)
(add-widget! picture-panel
(make Canvas (make Image ’((0 x) (1+1i x) (2+2i x))))
0)
(add-widget! picture-panel
(make Canvas (make Image ’((2 x) (1+1i x) (0+2i x))))
0)
(add-widget! main-panel picture-panel 5+2i)
(add-widget! main-panel (make Label "OK") 5+6i)
(printf "“s"n" (show (get-image main-panel)))
(add-widget! text-panel (make Label "!") 11)
(printf ""s™n" (show (get-image main-panel)))

(void)))))

(define GUI-program
(compound-unit
(import)
(link [G (GUI)]
[TG (test-GUI (G Image) (G show)

(G Label)
(G Canvas)
(G Panel) (G add-widget!) (G get-image))])

(export (TG main))))

19

Figure 11: Reusing the memoize-composite-function unit

(define cached-GUI-program
(compound-unit
(import)
(1ink [G (GUD)]
[M (memoize-composite-function (G Widget) (G get-image)
(G Panel) (G add-widget!))]
[TG (test-GUI (G Image) (G show)
(G Label)
(G Canvas)
(G Panel) (G add-widget!) (G get-image))])
(export (TG main))))

(compare GUI-program cached-GUI-program)

Figure 12: Output of GUI comparison

Running the program without caching:

((1+1i "hello") (7+1i "world") (7+4i x) (6+3i x) (5+2i x) (5+4i x)
(6+31i x) (7+2i x) (5+6i "OK"))

((1+1i "hello") (7+1i "world") (12+1i "!") (7+4i x) (6+3i x) (5+2i x)
(6+4i x) (6+31 x) (7+2i x) (5+6i "OK"))

Running the program with caching:

clear cache

clear cache

clear cache

clear cache

clear cache

clear cache

clear cache

((1+1i "hello") (7+1i "world") (7+4i x) (6+3i x) (5+2i x) (5+4i x)
(6+3i x) (7+2i x) (5+6i "OK"))

clear cache

clear cache

using cached value

using cached value

using cached value

using cached value

((1+1i "hello") (7+1i "world") (12+1i "!") (7+4i x) (6+3i x) (5+2i x)
(5+4i x) (6431 x) (7+2i x) (5+6i "OK"))

20

