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ABSTRACT
Languages that support incremental programming, that is,
the construction of new program components by specifying
how they differ from existing components, allow for clean
separation of concerns. Object-oriented languages support
incremental programming with inheritance and dynamic dis-
patch features: whenever a message is sent, a decision oc-
curs, but the branches of the decision can be specified in
separate components. Aspect-oriented programming and
predicate dispatching both introduce language mechanisms
that improve on this support by allowing an extensible deci-
sion to depend on information about the message send other
than just the dynamic type of the receiver or arguments. A
small prototype language is presented that unifies the best
features of these mechanisms, providing uniform support for
incremental programming whether concerns are crosscutting
or not. The language is demonstrated with a running ex-
ample, a small data structure library that is incrementally
extended with optimizations and new operations.

Keywords
Aspect-oriented programming, predicate dispatching, incre-
mental programming, extensibility, separation of concerns

1. INTRODUCTION
Incremental programming is defined by Cook and Pals-
berg as the construction of new program components by
specifying how they differ from existing components [9]. A
language that supports incremental programming allows for
clean separation of concerns, because a component that in-
volves multiple concerns can be expressed as a sequence of
components, one per concern, each one extending or overrid-
ing the behavior in the previous components without requir-
ing modification or duplication of code. This can improve
the understanding, maintenance, and re-use of software.

Object-oriented programming (OOP) languages typically
support incremental programming with inheritance and dy-
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namic dispatch features. Whenever a message is sent, a de-
cision occurs, but the branches of the decision can be spec-
ified in separate components, as methods whose signature
matches the message. The decision of what branch to follow
depends on the dynamic type of the receiver (or on the dy-
namic types of all of the arguments of the message send, in
a language with multiple dispatch such as CLOS [29], Dy-
lan [27], or MultiJava [8]). New branches can be added to
this decision by defining methods in (or specialized on) a
new class; when a message is sent to an instance of the new
class, the new method will be invoked. The new method
can provide a new alternate choice for the decision, or it can
extend or override the behavior of an existing method on an
ancestor class.

A significant restriction of this mechanism of extensible de-
cisions in OOP languages is that different methods corre-
sponding to the same message must be attached to (or spe-
cialized on) different classes; only type-dependent decisions
can be made extensible, and the decision must be based
on the type of the receiver (or the arguments). Many be-
havioral design patterns [14] are essentially workarounds for
this restriction. The State pattern, for example, is a way
to implement state-dependent dispatch using OOP’s type-
dependent dispatch, by making one class per state and hav-
ing objects delegate state-dependent messages to their state
objects. The behavior for new states can then be added
incrementally by making new state classes. However, the
delegation has a runtime cost and can be a coding burden;
moreover, the state objects must be manually kept up to
date when the state condition changes, so the states can’t
be implicitly determined by other variables that may inde-
pendently change.

A different solution for this kind of problem is to extend
the programming language to make it easier to express pro-
grams in a way that matches the design, rather than to
change a program’s design to fit the mechanisms of the lan-
guage. Aspect-oriented programming (AOP) [20] and
predicate dispatching (PD) [11] both introduce language
mechanisms that allow an extensible decision to depend on
information about the message send other than just the dy-
namic type of the receiver or arguments.

Aspect-oriented programming languages enable separation
of crosscutting concerns. In AspectJ [19], a general-purpose
AOP language that extends Java [15], crosscutting behavior
is defined as advice, where each piece of advice has a point-



cut which specifies when the advice is applicable. A point-
cut describes a set of join points, points in the execution
of a running program where behavior can be attached—in
other words, places where extensible decisions occur, includ-
ing message sends. A pointcut can be an arbitrary boolean
expression involving information available about the join
point.

Predicate dispatching is a form of dynamic dispatch that
unifies and extends the dispatch mechanisms found in many
programming languages, including object-oriented single
and multiple dispatch. In the PD language described by
Ernst, Kaplan, and Chambers [11], each method implemen-
tation has a predicate expression which specifies when the
method is applicable to a message send. The predicate can
be an arbitrary boolean expression involving the arguments
to the message send.

The extensible decision mechanisms of these two languages
are quite similar: pointcuts and advice in AspectJ are anal-
ogous to predicates and methods in PD1. However, each
mechanism has some advantages over the other. In AspectJ,
a piece of advice can apply to more than one message, while
a PD method must have a name that determines the message
that it applies to. In AspectJ, pointcuts can access more
information about a message send than just the data reach-
able from the receiver and arguments, including the control
flow history and the location of the message send code. As-
pectJ has a form of method combination: the before, after,
and around keywords determine whether a piece of advice
runs before, after, or instead of the other code applicable
to the join point, and in the body of an around method, a
proceed() expression can be used to pass execution to the
other code and intercept its return value; in PD, methods
can’t extend or combine with other methods, they can only
override. On the other hand, AspectJ is tightly coupled to
Java’s single dispatch and has different syntax for advice
and ordinary methods, both of which must be attached to
classes, whereas PD is a natural generalization of OO mul-
tiple dispatch with just one kind of method, and methods
can be declared as self-contained units apart from classes.
In AspectJ, the rules for determining precedence between
multiple pieces of advice that apply to the same join point
are complicated and somewhat ad-hoc, involving aspect in-
heritance, an aspect dominance relation defined separately
from inheritance, lexical ordering of the advice definitions
in the code, and ordering of the source files in the argu-
ment list given to the compiler; method overriding in PD is
based on logical implication of predicate expressions, which
is a natural generalization of the method overriding rules in
OOP languages (namely, subclass methods override super-
class methods).

This paper presents a small prototype language called Fred
that takes the best from both worlds. It has a dynamic dis-
patch mechanism that unifies those of AOP and OOP lan-
guages, and provides uniform support for incremental pro-
gramming whether concerns are crosscutting or not. Deci-
sions based on any information about the message send can
be made extensible in Fred, including the message itself, the

1The language described in [11] was not named, so I will use
PD to refer both to the predicate dispatching mechanism
and to that specific language.

dynamic types and values of the message’s arguments or
any data reachable from them, the control flow history at
the time of the message send, and the source location of the
message send code. The decision criteria can be specified
as arbitrary boolean expressions, but there is also syntactic
sugar for a more declarative and concise style. Method com-
bination is supported, and method overriding is determined
by logical implication, although this can be customized if a
different precedence relation is needed.

Section 2 informally describes the syntax and semantics of
Fred using a simple object-oriented example. Section 3
presents a longer example of a small data structure library
that is incrementally extended with optimizations and new
operations. Section 4 shows comparisons with other AOP
languages. The paper concludes with a discussion of future
research directions to be pursued.

2. FRED: A PROTOTYPE LANGUAGE OF
EXTENSIBLE DECISIONS

In order to experiment with the idea of unifying aspect-
oriented programming and predicate dispatching, I have
developed a small prototype language called Fred, imple-
mented as a set of procedures and macros in MzScheme [12].
I rely on a number of features of MzScheme to avoid having
to reproduce them in the language design of Fred, such as
first-class procedures and record datatypes (structures).

2.1 A Simple Example
There are three basic kinds of behavioral entities in Fred:
messages, branches, and decision points. Messages and
branches are defined with the special forms define-msg and
define-branch; a branch has two closures over decision
points, a predicate and a body. All behavior is performed
in branch bodies, by sending messages to lists of arguments.
Each message send causes a decision point entity to be cre-
ated and processed. Decision points can be inspected with
accessor functions such as dp-msg, dp-args, dp-previous,
and dp-source. A simple example will serve to illustrate
how these pieces can be put together:

(define-struct person

(fname lname))

(define-struct (knight person)

())

(define-msg full-name)

(define-branch

(lambda (dp)

(and (eq? (dp-msg dp) full-name)

(person? (car (dp-args dp)))))

(lambda (dp)

(let ((x (car (dp-args dp))))

(string-append (person-fname x) " "

(person-lname x)))))

(define-branch

(lambda (dp)

(and (eq? (dp-msg dp) full-name)

(knight? (car (dp-args dp)))))

(lambda (dp)

(string-append "Sir " (follow-next-branch))))



The first two definitions use MzScheme’s structure definition
syntax to create two structure types: person, with two fields
fname and lname, and its subtype knight, with no additional
fields. The define-struct form generates procedures for
creating structure instances and accessing the fields, as well
as a predicate procedure for testing whether an entity is an
instance of the structure type; the name of the predicate is
formed by appending a question mark to the type name. A
type predicate also returns true for all instances of subtypes.

The third definition creates a new unique message entity and
binds it to the name full-name in the current environment.
Messages are implemented as procedures so that a message
can be sent to a list of arguments simply by applying the
message to the arguments.

The fourth definition creates a new branch to handle the
full-name message being sent to a person value and adds
it to the global table of branches. The first argument to
define-branch is a condition predicate procedure that is
applied to every decision point; if it returns true, then the
second argument, the body procedure, is applied to the de-
cision point, and its return value is returned as the value of
the decision point. In this example, if the message of the
decision point is equal to full-name and the first element
of the argument list is an instance of the person type, then
the fname and lname field values of the instance are con-
catenated and returned as the value of the decision point.
In other words, sending the message full-name to a person

instance evaluates to the string representation of the full
name of the person.

The last definition creates a new branch to handle the
special case of knights, by prepending “Sir” to the per-
son’s full name. When the full-name message is sent to a
knight instance, both of the branches are applicable; when
two or more branches apply to a given decision point, the
branch whose predicate is most specific has higher prece-
dence. Specificity is determined by logical implication: if a
predicate p1 implies another predicate p2, i.e. p2 is always
true when p1 is true, then p1 is more specific than p2. In this
example, the second branch has precedence over the first,
because (knight? x) implies (person? x): all knights are
also persons. The follow-next-branch procedure causes
the next most precedent branch’s body procedure to be in-
voked on the current decision point, and returns its return
value. Thus, the second branch extends the behavior of the
first branch in the case of the argument being a knight.

2.2 Ambiguous Message Sends
If Fred cannot determine a single most precedent branch for
a given decision point, a “message ambiguous” error occurs.
This can happen in one of three ways:

1. The predicates of two applicable branches both imply
each other (i.e. they are logically equivalent).

2. Neither of the predicates of two applicable branches
implies the other (i.e. they are logically independent).

3. Fred’s implication determination algorithm fails on the
predicates of two applicable branches.

In all of these cases, the user must disambiguate the two
branches, either by explicitly declaring that one branch pre-
cedes the other or by creating a third applicable branch
whose predicate is strictly more specific than the other
two. (An example of the former is the around branch in
Section 3.3, and an example of the latter is shown in the
empty-cord extension in Section 3.2.)

The third case above can arise because logical implication
of predicates is undecidable in general, so Fred can only
have a conservative approximation to the implication rela-
tion. To determine predicate implication, Fred uses: the
subtype relation, both for user-defined structure types and
built-in Scheme types (such as the numeric type hierarchy);
substitution of equals for equals (e.g. (eq? x ’foo) implies
(symbol? x) because (symbol? ’foo) is true); and propo-
sitional calculus rules (such as (and P Q) implies P ). Al-
though Fred currently computes this relation between ap-
plicable branches at message send time, the relation could
instead be computed between all branches at branch def-
inition time. A static analyzer could even guarantee that
“message ambiguous” errors will never occur, by rejecting
a program unless it can determine that all pairs of branch
predicates are either related by implication in one direction
or logically exclusive, i.e. one implies the negation of the
other.

2.3 Syntactic Sugar
Explicitly applying accessors to the decision point can be
tedious, so there is some syntactic sugar available to make
branch definition a bit more concise, similar to AspectJ’s
pointcut designator syntax:

(define-branch

(&& (call full-name) (args person?))

(with-args (x)

(string-append (person-fname x) " "

(person-lname x)))))

(define-branch

(&& (call full-name) (args knight?))

(with-args (x)

(string-append "Sir " (follow-next-branch))))

The call, args, &&, and with-args special forms all create
procedures that take a decision point argument, so they can
be used to define the two parts of a branch:

• The call form takes a list of messages and creates
a predicate that tests a decision point’s message for
membership in the list.

• The args form takes a list of argument predicates and
creates a predicate that applies each argument predi-
cate to the corresponding element in a decision point’s
argument list.

• The && form combines two decision point predicates
into their conjunction. There are also || and ! forms
that create the disjunction and negation of decision
point predicates, respectively.



• The with-args form takes a formal parameter list and
a sequence of expressions and creates a body proce-
dure that binds a decision point’s argument values to
the formals and evaluates the sequence in the resulting
environment.

More syntactic sugar is available to make branch definition
even more concise in many cases:

(define-method full-name (x) & (person? x)

(string-append (person-fname x) " "

(person-lname x)))

(define-method full-name (x) & (knight? x)

(string-append "Sir " (follow-next-branch)))

The define-method special form creates a branch whose
predicate compares the message of a decision point to the
given message, as well as providing names for the arguments
to be bound to. It also defines the message if it is not al-
ready defined. Further syntactic sugar allows up to one test
per parameter to be moved into the formals specifier, as long
as the formal argument is named as the first operand of the
test expression:

(define-method full-name ((person? x))

(string-append (person-fname x) " "

(person-lname x)))

(define-method full-name ((knight? x))

(string-append "Sir " (follow-next-branch)))

3. AN AOP EXAMPLE IN FRED
For a longer example, consider a library to implement cords,
a data structure for strings that optimizes the concatenation
operation by storing a tree of fragments rather than copying
arrays of characters into a single array for every concatena-
tion [2]. I will start with the basic structure and behavior
and show how features and optimizations can be added to
the library incrementally without modifying any code, using
an aspect-oriented approach similar to the AspectJ imple-
mentation of cords by Huang [17].

3.1 Basic Structure and Behavior
First, we define three data types, cord, flat-cord, and
concat-cord. flat-cord is just a wrapper around Scheme
strings, while concat-cord has cords as left and right chil-
dren; they both inherit from the abstract base class cord:

(define-struct cord ())

(define-struct (flat-cord cord)

(string))

(define-struct (concat-cord cord)

(left right))

Now we can start defining behavior over these types. First,
the concatenation operation, which can handle both cords
and strings for either argument, and produces a cord:

(define-method concat ((string? l) r)

(concat (make-flat-cord l) r))

(define-method concat ((cord? l) (string? r))

(concat l (make-flat-cord r)))

(define-method concat ((cord? l) (cord? r))

(make-concat-cord l r))

Then we can define a length operator for the two kinds of
cords:

(define-method len ((flat-cord? x))

(string-length (flat-cord-string x)))

(define-method len ((concat-cord? x))

(+ (len (concat-cord-left x))

(len (concat-cord-right x))))

as well as an indexed reference operator:

(define-method ref ((flat-cord? x) (integer? i))

(ref (flat-cord-string x) i))

(define-method ref ((concat-cord? x) (integer? i))

(ref (concat-cord-left x) i))

(define-method ref ((concat-cord? x) (integer? i))

& (>= i (len (concat-cord-left x)))

(ref (concat-cord-right x)

(- i (len (concat-cord-left x)))))

Note that the ref operator for concat-cord instances is
split into two branches, one for each branch of the tree. The
predicate of the second branch is more specific than that of
the first branch, so it has precedence when they are both
applicable.

3.2 Adding New Subtypes
We can add new subtypes to cord just as easily as in a tra-
ditional object-oriented language. For example, to optimize
the substring operation, we can add a substring-cord type:

(define-struct (substring-cord cord)

(base offset length))

(define-method substring ((string? b)

(integer? o)

(integer? l))

(substring (make-flat-cord b) o l))

(define-method substring ((cord? b)

(integer? o)

(integer? l))

(make-substring-cord b o l))

and add new branches for the existing operations when the
first argument is a substring-cord instance:

(define-method len ((substring-cord? x))

(substring-cord-length x))

(define-method ref ((substring-cord? x)

(integer? i))

(ref (substring-cord-base x)

(+ i (substring-cord-offset x))))



We can also add new subtypes that aren’t implemented as
structure types; for example, we can optimize the case of
concatenating an empty cord to another cord, by defining
an empty-cord predicate:

(define (empty-cord? x)

(and (cord? x) (= (len x) 0)))

(define-method concat ((empty-cord? l) (cord? r))

r)

(define-method concat ((cord? l) (empty-cord? r))

& (not (empty-cord? l))

l)

Note that the extra condition in the predicate of the second
branch is required to ensure the two branches don’t both
apply when concatenating two empty cords; neither predi-
cate is more specific than the other, so this would result in
a “message ambiguous” error. Another way to avoid this
would be to add a third branch to handle the overlap case
explicitly:

(define-method concat ((empty-cord? l)

(empty-cord? r))

l)

If a cord is built by successively concatenating very short
strings, the tree will have many small nodes. We can im-
prove performance if we coalesce these into larger nodes, by
detecting this case and actually appending the strings rather
than creating a new node each time:

(define *max-flat-len* 32)

(define (short-cords? l r)

(and (flat-cord? l) (flat-cord? r)

(< (+ (len l) (len r)) *max-flat-len*)))

(define-method concat (l r) & (short-cords? l r)

(make-flat-cord (string-append

(flat-cord-string l)

(flat-cord-string r))))

(define-method concat ((concat-cord? c) r)

& (short-cords? (concat-cord-right c) r)

(make-concat-cord

(concat-cord-left c)

(concat (concat-cord-right c) r)))

The short-cords? predicate involves both of the arguments
to the message send; this is something that type-based dis-
patch can’t do, even with something like predicate classes [5]
that allowed dynamic classification of each argument.

3.3 Adding New Crosscutting Code
Now suppose we want to optimize the cords library by
keeping the tree structure balanced, so that the ref op-
erator doesn’t degenerate to linear search. This involves
two things: keeping track of the depth of the tree, and re-
balancing the tree after a node is added if the depth is too

big. This code cuts across several of the previously defined
operations and types, but we can still define it incrementally
in Fred.

First, instead of modifying the data structures to add a
depth field, we can create a new table and provide acces-
sors that acts the same as field accessors would:

(define *depth-table* (make-hash-table ’weak))

(define (compound-cord? x)

(or (concat-cord? x) (substring-cord? x)))

(define-method set-depth! ((compound-cord? x)

(integer? d))

(hash-table-put *depth-table* x d))

(define-method depth ((compound-cord? x))

(hash-table-get *depth-table* x))

(define-method depth ((flat-cord? x))

0)

In order to add the depth field to multiple types at once,
we make a new predicate that acts like a union type—again,
without actually needing to implement a data structure for
the type.

Now we need to extend the behavior of the compound cord
constructors, concat and substring, to update the depth

field and balance the tree if needed:

(define compound-cord-constructor?

(|| (call concat) (call substring))

(define-around-branch compound-cord-constructor?

(lambda (dp)

(let ((x (follow-next-branch)))

(update-depth! x)

(ensure-balanced x))))

This branch is an around branch, a special kind of branch
that has higher precedence than all non-around branches.
Otherwise, because its condition is more general than the
other branches that are applicable to concat and substring

message sends, it would have the lowest precedence.

In order to actually update the depth of the compound cord,
the decision needs to be split up into cases again:

(define-method update-depth! ((concat-cord? x))

(set-depth! x

(max (depth (concat-cord-left x))

(depth (concat-cord-right x)))))

(define-method update-depth! ((substring-cord? x))

(set-depth! x

(+ 1 (depth (substring-cord-base x)))))

(define-method update-depth! ((cord? x))

(void))

The third method is needed because concat can sometimes
return non-compound cords, such as when one of the argu-



ments is an empty cord. In this case the cord has no depth
and nothing needs to be updated.

The code for balancing the tree similarly decomposes into
cases:

(define-method ensure-balanced

((concat-cord? x)) & (unbalanced? x)

(balance x))

(define-method ensure-balanced

((substring-cord? x)) & (unbalanced? x)

(substring (balance (substring-cord-base x))

(substring-cord-offset x)

(substring-cord-length x)))

(define-method ensure-balanced ((cord? x))

x)

(define (unbalanced? x)

(< (len x) (fib (+ 2 (depth x))))))

(define-method balance ((concat-cord? x))

;; ...

)

3.4 Vanishing Aspects
There is a problem with the definition of the around branch
in the previous section. Notice that some of the concat

and substring branches don’t directly construct a new com-
pound cord, namely when one of the arguments is a string
instead of a cord; they convert the string into a cord, then
re-send the message. In these cases, the around branch is
followed twice, once for the original message send and then
once for the recursive message send. The result is that the
depth and balance check are computed redundantly.

One solution would be to change the condition of the around
branch to only apply when none of the arguments is a
string. However, suppose the implementation were changed
so that compound cords could be composed of both cords
and strings, and a concat message send would then always
directly construct a concat-cord instance even if one of the
arguments were a string. Then the around branch would
not be followed at all in this case. This kind of situation is
referred to as a “vanishing aspect” by Costanza [10], and is a
dual of the more well-known problem of “jumping aspects”
identified by Brichau, de Meuter, and de Volder [4].

A better solution is to change the condition to only apply
to non-recursive message sends. The dp-previous accessor
takes a decision point and retrieves the decision point that
immediately precedes it in the stack of decision points being
processed. The condition predicate of the around branch
can use this to walk up the stack to make sure that there
are no other compound constructor calls on it. This process
can be abbreviated with the cflow special form, which takes
a decision point predicate and creates a new decision point
predicate that applies it to each previous decision point,
returning true when it finds a match. So the around branch
predicate can be replaced with:

(&& compound-cord-constructor?

(! (cflow compound-cord-constructor?)))

4. OTHER AOP LANGUAGES
While the design of Fred was mainly inspired by AspectJ,
other AOP languages have similar mechanisms that support
incremental programming with extensible decisions. I con-
jecture that the dispatch mechanism in Fred is basic enough
to emulate most, if not all, of these other AOP languages.
This section presents a survey of some of the more prominent
AOP languages with brief discussions of how their mecha-
nisms could be emulated with branches.

4.1 Composition Filters
ComposeJ [33] and Sina [21] allows message send decisions to
be extended by attaching composition filters [1] to a class.
All messages sent to instances of that class are intercepted
by the filters, which may perform some action (such as del-
egating the message to some other code) based on predicate
expressions being satisfied. Filters are essentially sets of
branches whose predicates all refer to a particular class (or
set of classes, with the superimposition mechanism), which
can be parameterized.

4.2 Hyperslices and Hypermodules
Hyper/J [30] enables multi-dimensional separation and in-
tegration of concerns [31] by implementing the concerns as
hyperslice that can be integrated based on specifications
in hypermodules. A hypermodule has a set of instructions
such as merge, override, and bracket that express different
ways of combining the methods in multiple hyperslices into
a set of output classes. A hyperslice is like a set of branches
whose predicates can be parameterized by extra predicates
in a hypermodule; for example, the bracket instruction can
include a callsite specification that restricts the calling con-
text, similar to a predicate that uses dp-previous. The hy-
permodule language provides finer-grained control over the
precedence relation between branches, but everything must
be specified explicitly, rather than having logical implica-
tion between predicates determine the default precedence
relation.

4.3 Adaptive Programming
Adaptive programming [23] in DemeterJ [18] and DJ [26]
allows the decision of what to do at each step of an object
structure traversal to be extended by attaching an adap-
tive visitor to the traversal. Each visitor method specifies
what behavior should be executed before, after, or instead of
the traversal of objects of a particular class or the traversal
through a particular member name. Wildcards can be used
in the visitor method specification, for example to attach
behavior to every object traversed, or to every member in
the class graph with a given type. An adaptive visitor can
be thought of as a set of branches whose predicates all refer
to the same traversal, which is not determined until the vis-
itor is attached to a particular traversal. Lieberherr, Patt-
Shamir, and Orleans [24] discuss an extension that would
allow a visitor method to only be executed when some con-
dition on the current state and history of the traversal was
true; this is similar to using cflow to distingush different
paths in the call graph.

4.4 Aspectual Collaborations
Aspectual collaborations [22] provide a way to express a
collaboration between several classes as a generic unit of be-



havior that can wrap new behavior around the methods of
its participant classes. An aspectual method replaces an-
other method (or set of methods) based on a pattern that
matches the methods’ static signatures. This is like a branch
whose predicate refers to a set of messages and which is pa-
rameterized over the receiver class. Aspectual collaborations
have the advantage that they can be separately typechecked
and compiled; some of the techniques used in its implemen-
tation might be useful for optimizing branches that use a
restricted subset of the predicate expression language.

4.5 Mixin Layers
Mixin layers [28] provide a way to express a generic collabo-
ration as a set of mixins [3], which are essentially abstract
subclasses, i.e. classes whose inheritance is parameterized.
Each mixin contains a set of methods that can extend or
override methods in other classes without specifying where
those methods exist. A mixin layer can be thought of as a set
of branches whose predicates refer to a set of messages and
can be parameterized over the receiver argument classes.

4.6 Variation-Oriented Programming
Mezini’s Rondo language [25] was designed to address
context-dependent variations while supporting incremental
programming. A Rondo program consists of a set of adjust-
ments, which encapsulate sets of classes that extend other
classes (in a generalized sense, without subtyping) when cer-
tain conditions hold. Adjustments are essentially sets of
branches whose conditions share a common sub-condition.

5. CONCLUSION AND FUTURE WORK
This paper has shown how both AOP and PD languages
provide better support for incremental programming than
OOP by allowing extensible decisions that depend on infor-
mation about a message send other than just the dynamic
type of the receiver or arguments. A prototype language was
presented with a dynamic dispatch mechanism that unifies
those of AOP and OOP languages, and provides uniform
support for incremental programming whether concerns are
crosscutting or not. A running example demonstrated the
features of the language, and comparisons with other AOP
languages were shown. More research is needed, however,
to better understand the language’s dispatch mechanism, to
extend it, and to build higher-level mechanisms on top of it
to better support real-world programming.

In order to show that this model is basic enough to emulate
other AOP systems, I plan to develop larger examples that
compare directly to examples in those other systems, and
perhaps develop translations from those systems into my
model. For example, it should be possible to express all
the examples from the AspectJ Programming Guide [32]
in Fred, and either implement a translator from AspectJ
to Fred or implement a set of macros that correspond to
AspectJ syntax. This will probably involve extensions to
the model, for example to emulate the execution primitive
pointcut designator.

An obvious drawback to Fred’s current implementation is
that every decision point is processed dynamically, search-
ing the global set of branches for the most specific applica-
ble branch, which involves evaluating all the branch pred-
icates. PD implementation techniques [6] can be used to

improve the efficiency of this process by creating a dispatch
tree at compile time that avoids repeating tests and has an
optimal ordering of the tests. More structured support for
expressing branch conditions, i.e. turning some of the syn-
tactic sugar into primitive language constructs, will make
programs more amenable to being statically analyzed and
efficiently compiled—for instance, the cflow predicate can
be much more efficiently implemented by putting marks on
the stack at the point where its argument predicate is true,
rather than actually walking up the stack at the point where
the cflow predicate is evaluated.

A modularity mechanism is needed to organize branches into
larger reusable components, just as methods are organized
into classes and advice is organized into aspects. I have
started to design a mechanism called bundles for this pur-
pose, which are inspired by Flatt and Felleisen’s units [13].
Units are reusable modules, parameterized by sets of import
bindings and producing sets of export bindings. Units are
linked together statically into compound units by connect-
ing the imports and exports of other units together. Bun-
dles generalize units by expanding the imports and exports
to environments that include sets of branches in addition to
variable bindings. Building parameterization directly into
the module mechanism will lead to more flexible component
composition than the abstract pointcut mechanism of As-
pectJ, which is too tightly coupled with Java’s inheritance
model.

The around branch mechanism allows the programmer to
override the logical implication relation for determining
branch precedence. A more complex customization mech-
anism might be needed in larger programs to better control
the order of execution. One possibility is to include infor-
mation about the module that the branch came from in the
precedence relation, similar to how relationships between as-
pects in AspectJ determine the precedence of the advice in
those aspects. Another possibility would be to allow a finer-
grained mechanism for specifying the relation between two
branches directly.

One feature that is common to both AspectJ and PD is the
ability to bind variables in the pointcut or predicate that are
then available to the body of the advice or method. This
would be a useful addition to Fred as well; branches could
then be parameterized over several different predicates that
bind the same set of variables to different values extracted
from the decision point. This would also remove code in the
branch body that duplicates code in the predicate expres-
sion.

A common criticism of AOP is that it can be hard for some-
one reading the source code to determine exactly what be-
havior will occur for a particular message send; this was also
discussed by Harrison and Ossher in the context of their
subdivided procedures [16] language extension, which is
a precursor to PD. In an OOP language, the same problem
occurs, because the dynamic type of the receiver could be
one of many different classes which are defined separately
in the code, but the problem is exacerbated in Fred by the
fact that predicates can be arbitrary expressions, so even
if you know the dynamic types of the arguments you don’t
know where to look for the branch. AspectJ approaches



this problem by providing smarter code browsers that can
analyze the pointcuts and determine which aspects might
be in effect at any particular line of code. A similar ap-
proach could be taken with Fred, perhaps using DrScheme’s
support for building development environments [7].
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